
Introduction to Adobe AIR

Alin-Cristian JOIŢA

Faculty of Computer Science for Business Management,

 Romanian – American University, Bucharest, Romania

ABSTRACT

Rich Internet applications (RIA) are

web applications that have the features and

functionality of traditional desktop

applications. RIAs typically transfer the

processing necessary for the user interface to

the web client but keep the bulk of the data

(i.e. maintaining the state of the program, the

data etc) back on the application server.

AIR (Adobe Integrated Runtime),

which was originally code-named Apollo, is a

cross-operating system runtime, that allows

developers to build and deploy rich Internet

applications to the desktop using their existing

skill sets. AIR applications can be built using

HTML, AJAX, Adobe Flash, and Adobe Flex.

The version 1.0 release supports both Mac

OSX and WindowsXP and Vista. Adobe has

also confirmed that a Linux version of the

runtime is on its radar.

1. INTRODUCTION

What exactly does this AIR mean to

developers?

First and foremost, it means that if your

current skill set includes HTML/JavaScript

(AJAX), Flex, or Flash, you already have

everything you need to create a desktop

application that will install on a Windows or

Mac computer. Therefore, you don’t need to

know Java, C++, C, or any of the other

traditional desktop languages to create and

distribute full-fledged desktop applications.

It also means that, since Adobe has created

these runtimes, Adobe is the one responsible

for ensuring that your application performs the

same on any of the operating systems that AIR

supports. If you are coming from a Flash or

Flex background, you already know how nice

it is to write an application that performs the

same within the Flash player in a traditional

web browser. If you are coming from an

HTML/JavaScript background, you have

undoubtedly suffered through countless

frustrations and hacks to get your web page to

show up the same in many different browsers.

You will suffer no longer when your

HTML/JavaScript application is deployed as

an AIR application, since it will be running

within the Adobe Integrated Runtime.

Online versus Desktop Applications

The traditional definition of an online

application is one that runs within a web

browser while connected to the Internet. A

desktop application has traditionally been one

that runs on the local computer whether there

is an Internet connection or not. New

programming models, like AIR have begun to

blend these ideas and create hybrid

applications in which some of the data are

stored locally, while additional data may be

loaded into the application when an Internet

connection exists. Or the application can

synchronize its data or files when an Internet

connection exists for use later when an

Internet connection no longer exists. Google

via its Gears API has also begun to create

browser-based applications that can cache data

within an embedded database for offline use.

There is no doubt that the convergence

of online and desktop applications into

occasionally connected applications will

continue. With tools such as AIR, it is easier

than ever to create applications that can

perform well whether an Internet connection

exists or not.

2. THE RUNTIME ENVIRONMENT

The runtime environment is what

guarantees the consistent experience across

different operating systems and the versions of

each. For example, there is an API within an

AIR application that handles the creation of a

new file or folder. The AIR developer writes

the application using this API. The runtime

then translates this request into an operating-

system-specific call, ensuring that the file or

folder is created in the native way that the

operating system normally handles the

creation of a file or folder.

The runtime itself is distributed either as a

stand-alone install package catered to each

operating system, or it can be packaged and

distributed along with an AIR application.

Once the runtime exists on a user’s machine, it

will handle the responsibility of installing new

AIR applications as well as maintaining a

version history of itself, which is fully

backward-compatible. The backward

compatibility will allow developers to build

applications that target a specific release of the

runtime but also ensure that a future runtime

release doesn’t break an existing application.

A few of the unique features of the Adobe

Integrated Runtime include an integrated web

browser based on the Safari WebKit as well as

an integrated database based on the SQLite

embedded database distribution.

3. THE AIR FILE

The .air file extension is a new file

extension from Adobe that’s used to signify an

application built to run on the Adobe

Integrated Runtime. When a developer creates

a new AIR application, it is compiled to an

AIR package with the .air extension, for

example, HelloWorld.air. When a user

downloads the HelloWorld.air package, the

runtime recognizes this as an installer package

and will then install the application to the

operating system. The application itself will

either be an executable .exe file extension on

Windows or an .app file extension on Mac.

Once the application is installed, the original

HelloWorld.air file is no longer needed and

can be deleted, as it is needed for distribution

and installation.

4. THE TOOLS

Adobe has made it possible to create and

distribute AIR applications with absolutely no

cost at all. It again (as it did with Flex 2)

offers a free SDK that can be used to package

AIR applications using a command window

with the ADT library. The SDK also allows

the compilation of the application to a

temporary file for testing purposes. The

temporary file is created using the ADL

library and runs the application without the

need of installing it to the operating system.

Flex Builder has also been updated to

version 3 and now includes the AIR tools.

Flex Builder 3 makes it easy to create, test,

debug, and package AIR applications. Adobe

has also released extensions for both

Dreamweaver CS3 and Flash CS3 to integrate

the creation and testing of AIR applications

within these tools.

5. THE AIR SDK

The AIR SDK is a free library offered by

Adobe, which allows you to test an AIR

application using the adl command and also

compile the application to a distributable AIR

package using the adt command. There is no

GUI (graphical user interface) offered,

although it is not very difficult to set up an ant

task to call these commands from an editing

tool like Eclipse.

 ADL

The adl command is part of the free

AIR SDK and allows for the testing of

AIR applications without the need to

package and install the AIR application.

After navigating to the directory that

contains your application through a

terminal window, the sample syntax for

adl would look like this:

adl HelloWorld-app.xml

 ADT

The adt command is also part of the

free AIR SDK and allows for the

compiling and packaging of an AIR

application to an AIR package for

distribution and installation. After

navigating to the directory that contains

your application through a terminal

window, the sample syntax for adt would

look like this:

adt -package -storetype pkcs12 -

keystore cert.pfx HelloWorld.air

HelloWorld-app.xml HelloWorld.swf

6. SECURITY

 A desktop application has certain

characteristics. On the one hand, desktop

applications generally have a lot more

privileges than a similar web application, as

they have been installed by the user to a

specific desktop machine, implying a degree

of trust that is greater than that of arbitrary

web content. On the other hand, the privileges

inherent in a desktop application require a

greater degree of caution as certain coding

practices and patterns that may be common in

web applications may never be acceptable in a

desktop application.

Regardless of whether an application is

built primarily in Flash or HTML, all AIR

applications have some characteristics in

common. Within a given AIR application,

there is a set of AIR specific APIs that are

available to provide access to local system and

network resources that would not be normally

available in a web application contained in a

browser. Each AIR application also contains a

number of different sandboxes, depending on

what type of content is being loaded, and for

what purpose:

 Application sandbox is the root of every

AIR application. This sandbox permits

access to the privileged AIR specific

system APIs. In return for access to these

powerful APIs, some common dangerous

APIs and patterns are restricted. For

example, dynamic importing of remote

content is generally prohibited and

dynamic code generation techniques are

heavily restricted. Only content loaded

directly from the application home

directory (via the app:/ URI scheme) can

be placed in the application sandbox.

 Non-application sandbox contains all

other content that is not loaded directly

into the application sandbox. This includes

local and remote content. Such content

does not have direct access to AIR APIs

and obeys the same rules that it would

have to obey in the browser when loaded

from the same location (for example, a

local SWF file behaves the same way a

local SWF file would in the browser, and

HTML from a remote domain behaves like

it would behave in the browser).

Due to the restrictions placed upon

dynamic coding and script importing, the

application sandbox is generally the safest

sandbox to place your application code into as

the risk from injection attacks is greatly

diminished compared to the typical browser

sandbox. However, there may be cases where

developers still need to use these risky

techniques in their applications—for example,

when interacting with web services that only

support JSON non-compliant JavaScript APIs.

The recommended technique in these cases

is to create a non-application sandbox to

perform the risky operations, and then interact

with that sandbox via the SandboxBridge API.

The SandboxBridge is a bi-directional

serialization API designed to allow

domains/sandboxes that otherwise cannot trust

each other entirely to interact.

7. SIGNING OF AIR APPLICATIONS

 All AIR applications must be signed by a

code-signing certificate. The only question is

whether the certificate in question is what is

commonly known as a self-signed certificate,

which means that it is not recognized as being

trustworthy by a typical user's machine (unless

the user chooses to import that specific

certificate into his or her certificate trust

store), or a commercial code-signing

certificate purchased from a major

certification authority (CA).

 The recommended approach is to use a

commercially obtained code-signing

certificate, as that will be recognized by the

AIR installer on almost all user machines.

This permits the name of the publisher to be

recognized and provides a better installation

experience for the user.

REFERENCE

[1] Rich Tretola, “Beginning Adobe®

AIR™, Building Applications for the Adobe

Integrated Runtime”, Wiley Publishing,

2008

[2] Adobe devNet http://www.adobe.com/

devnet/air/articles/introduction_to_air_securit

y.html/

[3]. Wikipedia http://en.wikipedia.org/wiki/

Adobe_Air/

http://www.adobe.com/%20devnet/air/articles/introduction_to_air_security.html/
http://www.adobe.com/%20devnet/air/articles/introduction_to_air_security.html/
http://www.adobe.com/%20devnet/air/articles/introduction_to_air_security.html/
http://www.adobe.com/%20devnet/air/articles/introduction_to_air_security.html/
http://en.wikipedia.org/wiki/%20Adobe_Air/
http://en.wikipedia.org/wiki/%20Adobe_Air/
http://en.wikipedia.org/wiki/%20Adobe_Air/

